Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003383

RESUMO

Enzymes with expanded substrate specificity are good starting points for the design of biocatalysts for target reactions. However, the structural basis of the expanded substrate specificity is still elusive, especially in the superfamily of pyridoxal-5'-phosphate-dependent transaminases, which are characterized by a conserved organization of both the active site and functional dimer. Here, we analyze the structure-function relationships in a non-canonical D-amino acid transaminase from Blastococcus saxobsidens, which is active towards D-amino acids and primary (R)-amines. A detailed study of the enzyme includes a kinetic analysis of its substrate scope and a structural analysis of the holoenzyme and its complex with phenylhydrazine-a reversible inhibitor and analogue of (R)-1-phenylethylamine-a benchmark substrate of (R)-selective amine transaminases. We suggest that the features of the active site of transaminase from B. saxobsidens, such as the flexibility of the R34 and R96 residues, the lack of bulky residues in the ß-turn at the entrance to the active site, and the short O-pocket loop, facilitate the binding of substrates with and without α-carboxylate groups. The proposed structural determinants of the expanded substrate specificity can be used for the design of transaminases for the stereoselective amination of keto compounds.


Assuntos
Aminoácidos , Transaminases , Transaminases/metabolismo , Especificidade por Substrato , Cinética , Fenetilaminas/metabolismo
2.
FEBS Open Bio ; 13(11): 2047-2060, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37650870

RESUMO

Genetically encoded calcium indicators based on truncated troponin C are attractive probes for calcium imaging due to their relatively small molecular size and twofold reduced calcium ion buffering. However, the best-suited members of this family, YTnC and cNTnC, suffer from low molecular brightness, limited dynamic range, and/or poor sensitivity to calcium transients in neurons. To overcome these limitations, we developed an enhanced version of YTnC, named YTnC2. Compared with YTnC, YTnC2 had 5.7-fold higher molecular brightness and 6.4-fold increased dynamic range in vitro. YTnC2 was successfully used to reveal calcium transients in the cytosol and in the lumen of mitochondria of both mammalian cells and cultured neurons. Finally, we obtained and analyzed the crystal structure of the fluorescent domain of the YTnC2 mutant.


Assuntos
Cálcio , Troponina C , Humanos , Animais , Troponina C/genética , Troponina C/química , Troponina C/metabolismo , Cálcio/metabolismo , Proteínas de Fluorescência Verde/química , Células HeLa , Neurônios/metabolismo , Mamíferos
3.
Biochem J ; 480(16): 1267-1284, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37548495

RESUMO

The development of biocatalysts requires reorganization of the enzyme's active site to facilitate the productive binding of the target substrate and improve turnover number at desired conditions. Pyridoxal-5'-phosphate (PLP) - dependent transaminases are highly efficient biocatalysts for asymmetric amination of ketones and keto acids. However, transaminases, being stereoselective enzymes, have a narrow substrate specificity due to the ordered structure of the active site and work only in neutral-alkaline media. Here, we investigated the d-amino acid transaminase from Aminobacterium colombiense, with the active site organized differently from that of the canonical d-amino acid transaminase from Bacillus sp. YM-1. Using a combination of site-directed mutagenesis, kinetic analysis, molecular modeling, and structural analysis we determined the active site residues responsible for substrate binding, substrate differentiation, thermostability of a functional dimer, and affecting the pH optimum. We demonstrated that the high specificity toward d-glutamate/α-ketoglutarate is due to the interactions of a γ-carboxylate group with K237 residue, while binding of other substrates stems from the effectiveness of their accommodation in the active site optimized for d-glutamate/α-ketoglutarate binding. Furthermore, we showed that the K237A substitution shifts the catalytic activity optimum to acidic pH. Our findings are useful for achieving target substrate specificity and demonstrate the potential for developing and optimizing transaminases for various applications.


Assuntos
Aminoácidos , Transaminases , Transaminases/metabolismo , Ácidos Cetoglutáricos , Ácido Glutâmico , Especificidade por Substrato , Cinética , Concentração de Íons de Hidrogênio
4.
Biochem Biophys Res Commun ; 665: 169-177, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37163937

RESUMO

Neurobiologists widely use green genetically encoded calcium indicators (GECIs) for visualization of neuronal activity. Among them, ratiometric GECIs allow imaging of both active and non-active neuronal populations. However, they are not popular, since their properties are inferior to intensiometric GCaMP series of GECIs. The most characterized and developed ratiometric green GECI is FGCaMP7. However, the dynamic range and sensitivity of its large Stock's shift green (LSS-Green) form is significantly lower than its Green form and its molecular design is not optimal. To address these drawbacks, we engineered a ratiometric green calcium indicator, called FNCaMP, which is based on bright mNeonGreen protein and calmodulin from A. niger and has optimal NTnC-like design. We compared the properties of the FNCaMP and FGCaMP7 indicators in vitro, in mammalian cells, and in neuronal cultures. Finally, we obtained and analyzed X-ray structure of the FNCaMP indicator.


Assuntos
Cálcio , Calmodulina , Animais , Proteínas de Fluorescência Verde/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Neurônios/metabolismo , Sinalização do Cálcio , Mamíferos/metabolismo
5.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175610

RESUMO

The mRubyFT is a monomeric genetically encoded fluorescent timer based on the mRuby2 fluorescent protein, which is characterized by the complete maturation of the blue form with the subsequent conversion to the red one. It has higher brightness in mammalian cells and higher photostability compared with other fluorescent timers. A high-resolution structure is a known characteristic of the mRubyFT with the red form chromophore, but structural details of its blue form remain obscure. In order to obtain insight into this, we obtained an S148I variant of the mRubyFT (mRubyFTS148I) with the blocked over time blue form of the chromophore. X-ray data at a 1.8 Å resolution allowed us to propose a chromophore conformation and its interactions with the neighboring residues. The imidazolidinone moiety of the chromophore is completely matured, being a conjugated π-system. The methine bridge is not oxidized in the blue form bringing flexibility to the phenolic moiety that manifests itself in poor electron density. Integration of these data with the results of molecular dynamic simulation disclosed that the OH group of the phenolic moiety forms a hydrogen bond with the side chain of the T163 residue. A detailed comparison of mRubyFTS148I with other available structures of the blue form of fluorescent proteins, Blue102 and mTagBFP, revealed a number of characteristic differences. Molecular dynamic simulations with the combined quantum mechanic/molecular mechanic potentials demonstrated that the blue form exists in two protonation states, anion and zwitterion, both sharing enolate tautomeric forms of the C=C-O- fragment. These two forms have similar excitation energies, as evaluated by calculations. Finally, excited state molecular dynamic simulations showed that excitation of the chromophore in both protonation states leads to the same anionic fluorescent state. The data obtained shed light on the structural features and spectral properties of the blue form of the mRubyFT timer.


Assuntos
Corantes , Simulação de Dinâmica Molecular , Proteínas Luminescentes/metabolismo , Proteínas de Fluorescência Verde/química
6.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240444

RESUMO

Acinetobacter baumannii is a critical priority nosocomial pathogen that produces a variety of capsular polysaccharides (CPSs), the primary receptors for specific depolymerase-carrying phages. In this study, the tailspike depolymerases (TSDs) encoded in genomes of six novel Friunaviruses, APK09, APK14, APK16, APK86, APK127v, APK128, and one previously described Friunavirus phage, APK37.1, were characterized. For all TSDs, the mechanism of specific cleavage of corresponding A. baumannii capsular polysaccharides (CPSs) was established. The structures of oligosaccharide fragments derived from K9, K14, K16, K37/K3-v1, K86, K127, and K128 CPSs degradation by the recombinant depolymerases have been determined. The crystal structures of three of the studied TSDs were obtained. A significant reduction in mortality of Galleria mellonella larvae infected with A. baumannii of K9 capsular type was shown in the example of recombinant TSD APK09_gp48. The data obtained will provide a better understanding of the interaction of phage-bacterial host systems and will contribute to the formation of principles of rational usage of lytic phages and phage-derived enzymes as antibacterial agents.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Mariposas , Animais , Bacteriófagos/genética , Acinetobacter baumannii/metabolismo , Larva/microbiologia , Antibacterianos/metabolismo
7.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903355

RESUMO

Pyridoxal-5'-phosphate (PLP)-dependent transaminases are highly efficient biocatalysts for stereoselective amination. D-amino acid transaminases can catalyze stereoselective transamination producing optically pure D-amino acids. The knowledge of substrate binding mode and substrate differentiation mechanism in D-amino acid transaminases comes down to the analysis of the transaminase from Bacillus subtilis. However, at least two groups of D-amino acid transaminases differing in the active site organization are known today. Here, we present a detailed study of D-amino acid transaminase from the gram-negative bacterium Aminobacterium colombiense with a substrate binding mode different from that for the transaminase from B. subtilis. We study the enzyme using kinetic analysis, molecular modeling, and structural analysis of holoenzyme and its complex with D-glutamate. We compare the multipoint binding of D-glutamate with the binding of other substrates, D-aspartate and D-ornithine. QM/MM MD simulation reveals that the substrate can act as a base and its proton can be transferred from the amino group to the α-carboxylate group. This process occurs simultaneously with the nucleophilic attack of the PLP carbon atom by the nitrogen atom of the substrate forming gem-diamine at the transimination step. This explains the absence of the catalytic activity toward (R)-amines that lack an α-carboxylate group. The obtained results clarify another substrate binding mode in D-amino acid transaminases and underpinned the substrate activation mechanism.


Assuntos
Aminoácidos , Transaminases , Transaminases/metabolismo , Ácido Glutâmico , Cinética , Bacillus subtilis/metabolismo , Fosfato de Piridoxal/metabolismo , Catálise , Especificidade por Substrato
8.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834686

RESUMO

True genetically encoded monomeric fluorescent timers (tFTs) change their fluorescent color as a result of the complete transition of the blue form into the red form over time. Tandem FTs (tdFTs) change their color as a consequence of the fast and slow independent maturation of two forms with different colors. However, tFTs are limited to derivatives of the mCherry and mRuby red fluorescent proteins and have low brightness and photostability. The number of tdFTs is also limited, and there are no blue-to-red or green-to-far-red tdFTs. tFTs and tdFTs have not previously been directly compared. Here, we engineered novel blue-to-red tFTs, called TagFT and mTagFT, which were derived from the TagRFP protein. The main spectral and timing characteristics of the TagFT and mTagFT timers were determined in vitro. The brightnesses and photoconversions of the TagFT and mTagFT tFTs were characterized in live mammalian cells. The engineered split version of the TagFT timer matured in mammalian cells at 37 °C and allowed the detection of interactions between two proteins. The TagFT timer under the control of the minimal arc promoter, successfully visualized immediate-early gene induction in neuronal cultures. We also developed and optimized green-to-far-red and blue-to-red tdFTs, named mNeptusFT and mTsFT, which were based on mNeptune-sfGFP and mTagBFP2-mScarlet fusion proteins, respectively. We developed the FucciFT2 system based on the TagFT-hCdt1-100/mNeptusFT2-hGeminin combination, which could visualize the transitions between the G1 and S/G2/M phases of the cell cycle with better resolution than the conventional Fucci system because of the fluorescent color changes of the timers over time in different phases of the cell cycle. Finally, we determined the X-ray crystal structure of the mTagFT timer and analyzed it using directed mutagenesis.


Assuntos
Corantes , Mamíferos , Animais , Proteínas Luminescentes/metabolismo , Mutagênese , Mamíferos/metabolismo
9.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768612

RESUMO

The crystal structure of bacterial oligopeptidase B from Serratia proteamaculans (SpOpB) in complex with a chloromethyl ketone inhibitor was determined at 2.2 Å resolution. SpOpB was crystallized in a closed (catalytically active) conformation. A single inhibitor molecule bound simultaneously to the catalytic residues S532 and H652 mimicked a tetrahedral intermediate of the catalytic reaction. A comparative analysis of the obtained structure and the structure of OpB from Trypanosoma brucei (TbOpB) in a closed conformation showed that in both enzymes, the stabilization of the D-loop (carrying the catalytic D) in a position favorable for the formation of a tetrahedral complex occurs due to interaction with the neighboring loop from the ß-propeller. However, the modes of interdomain interactions were significantly different for bacterial and protozoan OpBs. Instead of a salt bridge (as in TbOpB), in SpOpB, a pair of polar residues following the catalytic D617 and a pair of neighboring arginine residues from the ß-propeller domain formed complementary oppositely charged surfaces. Bioinformatics analysis and structural modeling show that all bacterial OpBs can be divided into two large groups according to these two modes of D-loop stabilization in closed conformations.


Assuntos
Serina Endopeptidases , Trypanosoma brucei brucei , Serina Endopeptidases/metabolismo , Trypanosoma brucei brucei/metabolismo , Catálise
10.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498942

RESUMO

NTnC-like green fluorescent genetically encoded calcium indicators (GECIs) with two calcium ion binding sites were constructed using the insertion of truncated troponin C (TnC) from Opsanus tau into green fluorescent proteins (GFPs). These GECIs are small proteins containing the N- and C-termini of GFP; they exert a limited effect on the cellular free calcium ion concentration; and in contrast to calmodulin-based calcium indicators they lack undesired interactions with intracellular proteins in neurons. The available TnC-based NTnC or YTnC GECIs had either an inverted response and high brightness but a limited dynamic range or a positive response and fast kinetics in neurons but lower brightness and an enhanced but still limited dF/F dynamic range. Here, we solved the crystal structure of NTnC at 2.5 Å resolution. Based on this structure, we developed positive NTnC2 and inverted iNTnC2 GECIs with a large dF/F dynamic range in vitro but very slow rise and decay kinetics in neurons. To overcome their slow responsiveness, we swapped TnC from O. tau in NTnC2 with truncated troponin C proteins from the muscles of fast animals, namely, the falcon, hummingbird, cheetah, bat, rattlesnake, and ant, and then optimized the resulting constructs using directed molecular evolution. Characterization of the engineered variants using purified proteins, mammalian cells, and neuronal cultures revealed cNTnC GECI with truncated TnC from Calypte anna (hummingbird) to have the largest dF/F fluorescence response and fast dissociation kinetics in neuronal cultures. In addition, based on the insertion of truncated TnCs from fast animals into YTnC2, we developed fYTnC2 GECI with TnC from Falco peregrinus (falcon). The purified proteins cNTnC and fYTnC2 had 8- and 6-fold higher molecular brightness and 7- and 6-fold larger dF/F responses to the increase in Ca2+ ion concentration than YTnC, respectively. cNTnC GECI was also 4-fold more photostable than YTnC and fYTnC2 GECIs. Finally, we assessed the developed GECIs in primary mouse neuronal cultures stimulated with an external electric field; in these conditions, cNTnC had a 2.4-fold higher dF/F fluorescence response than YTnC and fYTnC2 and was the same or slightly slower (1.4-fold) than fYTnC2 and YTnC in the rise and decay half-times, respectively.


Assuntos
Cálcio , Troponina C , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Indicadores e Reagentes , Troponina C/genética , Troponina C/química , Troponina C/metabolismo
11.
Structure ; 30(7): 1004-1015.e4, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580610

RESUMO

ZAD is a C4 zinc-coordinating domain often found at the N-terminus mostly of arthropodan transcription factors with multiple C2H2 zinc-finger domains involved in the regulation of chromosome architecture and promotor activity. ZADs predominantly form homodimers and have low primary sequence similarity. We obtained three crystal structures of the most phylogenetically distant Drosophila ZADs and structure of the only known ZAD-like domain from a mammalian protein (ZNF276). All ZAD structures demonstrate unity of the spatial fold as well as some unique structural features. The specific homodimerization of ZAD is primarily determined by the position and size of secondary structural elements and is further strengthened by a number of unique interactions between subunits. Structural comparison allowed for unraveling key sequence features underlying the similarity of the spatial fold. These features result in a broad variety of ZADs in Arthropod C2H2 proteins, allowing for the emergence of a wide range of highly specific homodimers.


Assuntos
Proteínas de Drosophila , Dedos de Zinco , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Mamíferos/metabolismo , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Dedos de Zinco/genética
12.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328628

RESUMO

Genetically encoded monomeric blue-to-red fluorescent timers (mFTs) change their fluorescent color over time. mCherry-derived mFTs were used for the tracking of the protein age, visualization of the protein trafficking, and labeling of engram cells. However, the brightness of the blue and red forms of mFTs are 2-3- and 5-7-fold dimmer compared to the brightness of the enhanced green fluorescent protein (EGFP). To address this limitation, we developed a blue-to-red fluorescent timer, named mRubyFT, derived from the bright mRuby2 red fluorescent protein. The blue form of mRubyFT reached its maximum at 5.7 h and completely transformed into the red form that had a maturation half-time of 15 h. Blue and red forms of purified mRubyFT were 4.1-fold brighter and 1.3-fold dimmer than the respective forms of the mCherry-derived Fast-FT timer in vitro. When expressed in mammalian cells, both forms of mRubyFT were 1.3-fold brighter than the respective forms of Fast-FT. The violet light-induced blue-to-red photoconversion was 4.2-fold less efficient in the case of mRubyFT timer compared to the same photoconversion of the Fast-FT timer. The timer behavior of mRubyFT was confirmed in mammalian cells. The monomeric properties of mRubyFT allowed the labeling and confocal imaging of cytoskeleton proteins in live mammalian cells. The X-ray structure of the red form of mRubyFT at 1.5 Å resolution was obtained and analyzed. The role of the residues from the chromophore surrounding was studied using site-directed mutagenesis.


Assuntos
Luz , Mamíferos , Animais , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/metabolismo , Mamíferos/metabolismo , Mutagênese Sítio-Dirigida
13.
Appl Microbiol Biotechnol ; 106(4): 1493-1509, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35129654

RESUMO

In this study, we compared the properties and structures of three fungal GH12 enzymes: the strict endoglucanase Bgh12A and the xyloglucanase Xgh12B from Aspergillus cervinus, and the endoglucanase Egh12 from Thielavia terrestris combining activity on linear ß-glucan and branched xyloglucan. Egh12 from T. terrestris was produced in Pichia pastoris, purified, and characterized as a thermostable enzyme with maximal activity at 70 ºC and a half-life time of 138 min at 65 °C. We for the first time demonstrated that the GH12 endoglucanases Egh12 and Bgh12A, but not the strict xyloglucanase Xgh12B, hydrolyzed (1,3)-ß-linkages in (1,3;1,4)-ß-D-glucooligosaccharides and had transglycosylase activity on (1,3)-ß-D-glucooligosaccharides. Phylogenetic analysis indicated that Egh12 from T. terrestris and Bgh12A from A. cervinus are more related than Bgh12A and Xgh12B isolated from one strain. The X-ray structure of Bgh12A was determined with 2.17 Å resolution and compared with 3D-homology models of Egh12 and Xgh12B. The enzymes have a ß-jelly roll structure with a catalytic cleft running across the protein. Comparative analysis and a docking study demonstrated the importance of endoglucanase-specific loop 1 partly covering the catalytic cleft for correct placement of the linear substrates. Variability in substrate specificity between the GH12 endoglucanases is determined by non-conservative residues in structural loops framing the catalytic cleft. A residue responsible for the thermostability of Egh12 was predicted. The key structural elements and residues described in this study may serve as potential targets for modification aimed at the improvement of enzymatic properties. KEY POINTS: • Thermostable endoglucanase Egh12 from T. terrestris was produced in P. pastoris, purified, and characterized • The X-ray structure of GH12 endoglucanase Bgh12A from A. cervinus was resolved • GH12 endoglucanases, but not GH12 xyloglucanases, hydrolyze (1,3)-ß-linkages in (1,3;1,4)-ß-D-glucooligosaccharides.


Assuntos
Celulase , Sordariales , Aspergillus , Celulase/metabolismo , Filogenia , Sordariales/metabolismo , Especificidade por Substrato
14.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34884694

RESUMO

Genetically encoded red fluorescent proteins with a large Stokes shift (LSSRFPs) can be efficiently co-excited with common green FPs both under single- and two-photon microscopy, thus enabling dual-color imaging using a single laser. Recent progress in protein development resulted in a great variety of novel LSSRFPs; however, the selection of the right LSSRFP for a given application is hampered by the lack of a side-by-side comparison of the LSSRFPs' performance. In this study, we employed rational design and random mutagenesis to convert conventional bright RFP mScarlet into LSSRFP, called LSSmScarlet, characterized by excitation/emission maxima at 470/598 nm. In addition, we utilized the previously reported LSSRFPs mCyRFP1, CyOFP1, and mCRISPRed as templates for directed molecular evolution to develop their optimized versions, called dCyRFP2s, dCyOFP2s and CRISPRed2s. We performed a quantitative assessment of the developed LSSRFPs and their precursors in vitro on purified proteins and compared their brightness at 488 nm excitation in the mammalian cells. The monomeric LSSmScarlet protein was successfully utilized for the confocal imaging of the structural proteins in live mammalian cells and multicolor confocal imaging in conjugation with other FPs. LSSmScarlet was successfully applied for dual-color two-photon imaging in live mammalian cells. We also solved the X-ray structure of the LSSmScarlet protein at the resolution of 1.4 Å that revealed a hydrogen bond network supporting excited-state proton transfer (ESPT). Quantum mechanics/molecular mechanics molecular dynamic simulations confirmed the ESPT mechanism of a large Stokes shift. Structure-guided mutagenesis revealed the role of R198 residue in ESPT that allowed us to generate a variant with improved pH stability. Finally, we showed that LSSmScarlet protein is not appropriate for STED microscopy as a consequence of LSSRed-to-Red photoconversion with high-power 775 nm depletion light.


Assuntos
Substâncias Luminescentes/química , Proteínas Luminescentes/química , Clonagem Molecular , Células HeLa , Humanos , Substâncias Luminescentes/isolamento & purificação , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Proteínas Luminescentes/isolamento & purificação , Simulação de Dinâmica Molecular , Estrutura Molecular
15.
Biomolecules ; 11(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466452

RESUMO

The gene coding for a novel cold-active esterase PMGL3 was previously obtained from a Siberian permafrost metagenomic DNA library and expressed in Escherichia coli. We elucidated the 3D structure of the enzyme which belongs to the hormone-sensitive lipase (HSL) family. Similar to other bacterial HSLs, PMGL3 shares a canonical α/ß hydrolase fold and is presumably a dimer in solution but, in addition to the dimer, it forms a tetrameric structure in a crystal and upon prolonged incubation at 4 °C. Detailed analysis demonstrated that the crystal tetramer of PMGL3 has a unique architecture compared to other known tetramers of the bacterial HSLs. To study the role of the specific residues comprising the tetramerization interface of PMGL3, several mutant variants were constructed. Size exclusion chromatography (SEC) analysis of D7N, E47Q, and K67A mutants demonstrated that they still contained a portion of tetrameric form after heat treatment, although its amount was significantly lower in D7N and K67A compared to the wild type. Moreover, the D7N and K67A mutants demonstrated a 40 and 60% increase in the half-life at 40 °C in comparison with the wild type protein. Km values of these mutants were similar to that of the wt PMGL3. However, the catalytic constants of the E47Q and K67A mutants were reduced by ~40%.


Assuntos
Temperatura Baixa , Esterases/química , Multimerização Proteica , Sequência de Aminoácidos , Domínio Catalítico , Detergentes/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Esterases/metabolismo , Íons , Metais/farmacologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Cloreto de Sódio/farmacologia , Solventes , Homologia Estrutural de Proteína
16.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344594

RESUMO

Genetically encoded calcium indicators (GECIs) have become a widespread tool for the visualization of neuronal activity. As compared to popular GCaMP GECIs, the FGCaMP indicator benefits from calmodulin and M13-peptide from the fungi Aspergillus niger and Aspergillus fumigatus, which prevent its interaction with the intracellular environment. However, FGCaMP exhibits a two-phase fluorescence behavior with the variation of calcium ion concentration, has moderate sensitivity in neurons (as compared to the GCaMP6s indicator), and has not been fully characterized in vitro and in vivo. To address these limitations, we developed an enhanced version of FGCaMP, called FGCaMP7. FGCaMP7 preserves the ratiometric phenotype of FGCaMP, with a 3.1-fold larger ratiometric dynamic range in vitro. FGCaMP7 demonstrates 2.7- and 8.7-fold greater photostability compared to mEGFP and mTagBFP2 fluorescent proteins in vitro, respectively. The ratiometric response of FGCaMP7 is 1.6- and 1.4-fold higher, compared to the intensiometric response of GCaMP6s, in non-stimulated and stimulated neuronal cultures, respectively. We reveal the inertness of FGCaMP7 to the intracellular environment of HeLa cells using its truncated version with a deleted M13-like peptide; in contrast to the similarly truncated variant of GCaMP6s. We characterize the crystal structure of the parental FGCaMP indicator. Finally, we test the in vivo performance of FGCaMP7 in mouse brain using a two-photon microscope and an NVista miniscope; and in zebrafish using two-color ratiometric confocal imaging.


Assuntos
Cálcio/metabolismo , Expressão Gênica , Imagem Molecular , Neurônios/metabolismo , Potenciais de Ação , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Fungos/genética , Genes Reporter , Células HeLa , Humanos , Camundongos , Microscopia de Fluorescência , Modelos Moleculares , Imagem Molecular/métodos , Neurônios/citologia , Conformação Proteica , Engenharia de Proteínas , Relação Estrutura-Atividade , Córtex Visual/fisiologia
17.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121243

RESUMO

Green fluorescent genetically encoded calcium indicators (GECIs) are the most popular tool for visualization of calcium dynamics in vivo. However, most of them are based on the EGFP protein and have similar molecular brightnesses. The NTnC indicator, which is composed of the mNeonGreen fluorescent protein with the insertion of troponin C, has higher brightness as compared to EGFP-based GECIs, but shows a limited inverted response with an ΔF/F of 1. By insertion of a calmodulin/M13-peptide pair into the mNeonGreen protein, we developed a green GECI called NCaMP7. In vitro, NCaMP7 showed positive response with an ΔF/F of 27 and high affinity (Kd of 125 nM) to calcium ions. NCaMP7 demonstrated a 1.7-fold higher brightness and similar calcium-association/dissociation dynamics compared to the standard GCaMP6s GECI in vitro. According to fluorescence recovery after photobleaching (FRAP) experiments, the NCaMP7 design partially prevented interactions of NCaMP7 with the intracellular environment. The NCaMP7 crystal structure was obtained at 1.75 Å resolution to uncover the molecular basis of its calcium ions sensitivity. The NCaMP7 indicator retained a high and fast response when expressed in cultured HeLa and neuronal cells. Finally, we successfully utilized the NCaMP7 indicator for in vivo visualization of grating-evoked and place-dependent neuronal activity in the visual cortex and the hippocampus of mice using a two-photon microscope and an NVista miniscope, respectively.


Assuntos
Cálcio/metabolismo , Técnicas Genéticas , Proteínas de Fluorescência Verde/metabolismo , Animais , Comportamento Animal , Células Cultivadas , Cristalografia por Raios X , Fluorometria , Células HeLa , Hipocampo/metabolismo , Humanos , Indicadores e Reagentes , Cinética , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neurônios/metabolismo , Fótons , Córtex Visual/fisiologia , Vigília
18.
PLoS One ; 15(1): e0226838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31990908

RESUMO

Lipases comprise a large class of hydrolytic enzymes which catalyze the cleavage of the ester bonds in triacylglycerols and find numerous biotechnological applications. Previously, we have cloned the gene coding for a novel esterase PMGL2 from a Siberian permafrost metagenomic DNA library. We have determined the 3D structure of PMGL2 which belongs to the hormone-sensitive lipase (HSL) family and contains a new variant of the active site motif, GCSAG. Similar to many other HSLs, PMGL2 forms dimers in solution and in the crystal. Our results demonstrated that PMGL2 and structurally characterized members of the GTSAG motif subfamily possess a common dimerization interface that significantly differs from that of members of the GDSAG subfamily of known structure. Moreover, PMGL2 had a unique organization of the active site cavity with significantly different topology compared to the other lipolytic enzymes from the HSL family with known structure including the distinct orientation of the active site entrances within the dimer and about four times larger size of the active site cavity. To study the role of the cysteine residue in GCSAG motif of PMGL2, the catalytic properties and structure of its double C173T/C202S mutant were examined and found to be very similar to the wild type protein. The presence of the bound PEG molecule in the active site of the mutant form allowed for precise mapping of the amino acid residues forming the substrate cavity.


Assuntos
Bactérias/enzimologia , Lipase/química , Lipase/metabolismo , Mutação , Pergelissolo/microbiologia , Motivos de Aminoácidos , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Lipase/genética , Metagenoma , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Serina/metabolismo , Sibéria , Especificidade por Substrato
19.
Viruses ; 10(6)2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882827

RESUMO

Proteins that include enzymatic domain degrading the bacterial cell wall and a domain providing transport through the bacterial outer membrane are considered as prospective compounds to combat pathogenic Gram-negative bacteria. This paper presents an isolation and study of an enzyme of this class naturally encoded in the prophage region of Acinetobacter baumannii AB 5075 genome. Recombinant protein expressed in E. coli exhibits an antimicrobial activity with respect to live cultures of Gram-negative bacteria reducing the population of viable bacteria by 1.5⁻2 log colony forming units (CFU)/mL. However the protein becomes rapidly inactivated and enables the bacteria to restore the population. AcLys structure determined by X-ray crystallography reveals a predominantly α—helical fold similar to bacteriophage P22 lysozyme. The С-terminal part of AcLys polypeptide chains forms an α—helix enriched by Lys and Arg residues exposed outside of the protein globule. Presumably this type of structure of the C-terminal α—helix has evolved evolutionally enabling the endolysin to pass the inner membrane during the host lysis or, potentially, to penetrate the outer membrane of the Gram-negative bacteria.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Endopeptidases/química , Endopeptidases/metabolismo , Prófagos/enzimologia , Cristalografia por Raios X , Endopeptidases/genética , Endopeptidases/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Conformação Proteica em alfa-Hélice , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...